
3D Human Pose Estimation from Monocular
Images with Deep Convolutional Neural

Network

Sijin Li Antoni B. Chan

Department of Computer Science
City University of Hong Kong

Abstract. In this paper, we propose a deep convolutional neural net-
work for 3D human pose estimation from monocular images. We train
the network using two strategies: 1) a multi-task framework that jointly
trains pose regression and body part detectors; 2) a pre-training strategy
where the pose regressor is initialized using a network trained for body
part detection. We compare our network on a large data set and achieve
significant improvement over baseline methods. Human pose estimation
is a structured prediction problem, i.e., the locations of each body part
are highly correlated. Although we do not add constraints about the cor-
relations between body parts to the network, we empirically show that
the network has disentangled the dependencies among different body
parts, and learned their correlations.

1 Introduction

Human pose estimation is an active area in computer vision due to its wide
potential applications. In this paper, we focus on estimating 3D human pose
from monocular RGB images [1–3]. In general, recovering 3D pose from 2D
RGB images is considered more difficult than 2D pose estimation, due to the
larger 3D pose space, more ambiguities, and the ill-posed problem due to the
irreversible perspective projection. Although using depth maps has been shown
to be effective for 3D human pose estimation [4], the majority of the media on
the Internet is still in 2D RGB format. In addition, monocular pose estimation
can be used to aid multi-view pose estimation.

Human pose estimation approaches can be classified into two types—model-
based generative methods and discriminative methods. The pictorial structure
model (PSM) is one of the most popular generative models for 2D human pose
estimation [5, 6]. The conventional PSM treats the human body as an articulated
structure. The model usually consists of two terms, which model the appearance
of each body part and the spatial relationship between adjacent parts. Since the
length of a limb in 2D can vary, a mixture of models was proposed for model-
ing each body part [7]. The spatial relationships between articulated parts are
simpler for 3D pose, since the limb length in 3D is a constant for one specific sub-
ject. [8] proposes to apply PSM to 3D pose estimation by discretizing the space.

2 Sijin Li Antoni B. Chan

However, the pose space grows cubicly with the resolution of the discretization,
i.e., doubling the resolution in each dimension will octuple the pose space.

Discriminative methods view pose estimation as a regression problem [4,
9–11]. After extracting features from the image, a mapping is learned from the
feature space to the pose space. Because of the articulated structure of the human
skeleton, the joint locations are highly correlated. To consider the dependencies
between output variables, [11] proposes to use structured SVM to learn the
mapping from segmentation features to joint locations. [9] models both the input
and output with Gaussian processes, and predicts target poses by minimizing
the KL divergence between the input and output Gaussian distributions.

Instead of dealing with the structural dependencies manually, a more direct
way is to “embed” the structure into the mapping function and learn a represen-
tation that disentangles the dependencies between output variables. In this case
models need to discover the patterns of human pose from data, which usually
requires a large dataset for learning. [4] uses approximately 500,000 images to
train regression forests for predicting body part labels from depth images, but
the dataset is not publicly available. The recently released Human3.6M dataset
[12] contains about 3.6 million video frames with labeled poses of several human
subjects performing various tasks. Such a large dataset makes it possible to train
data-driven pose estimation models.

Recently, deep neural networks have achieved success in many computer vi-
sion applications [13, 14], and deep models have been shown to be good at dis-
entangling factors [15, 16]. Convolutional neural networks are one of the most
popular architectures for vision problems because it reduces the number of pa-
rameters (compared to fully-connected deep architectures), which makes training
easier and reduces overfitting. In addition, the convolutional and max-pooling
structure enables the network to extract translation invariant features.

In this paper, we consider two approaches to train deep convolutional neural
networks for monocular 3D pose estimation. In particular, one approach is to
jointly train the pose regression task with a set of detection tasks in a hetero-
geneous multi-task learning framework. The other approach is to pre-train the
network using the detection tasks, and then refine the network using the pose
regression task alone. To the best of our knowledge, we are the first to show
that deep neural networks can be applied to 3D human pose estimation from
single images. By analyzing the weights learned in the regression network, we
also show that the network has discovered correlation patterns of human pose.

2 Related Work

There is a large amount of literature on pose estimation, and we refer the reader
to [17] for a review. In the following, we will briefly review recent regression
networks and pose estimation techniques.

[18] trains convolutional neural networks to classify whether a given window
contains one specific body-part, and then detection maps for each body-part
are calculated by sliding the detection window over the whole image. A spatial

3D Human Pose Estimation from Monocular Images with Deep CNN 3

model is applied to enforce consistencies among all detection results. [19] applies
random forests for joint point regression on depth maps. The tree structures
are learned by minimizing a classification cost function. For each leaf node,
a distribution of 3d offsets to the joints is estimated for pixels reaching that
node. Given a test image, all the pixels are classified into leaf nodes, and offset
distributions are used for generating the votes for joint locations.

In [20], a cascade neural network is proposed for stage-by-stage prediction of
facial points. Networks in the later stages will take inputs centered at the predic-
tions of the previous stage, and it was shown that cascading the networks helps
to improve the accuracy. Similarly, [21] cascades 3 stages of neural networks for
estimating 2D human pose from RGB images. In each stage, the network ar-
chitecture is similar to the classification network in [13], but is applied to joint
point prediction in 2D images The networks in the later stages take higher reso-
lution input windows around the previous predictions. In this way, more details
can be utilized to refine the previous predictions. The cascading process assumes
that the prediction can be made accurately by only looking at a relatively small
local window around the target joints. However, this is not the case for 3D pose
estimation. To estimate the joint locations in 3D, the context around the target
joints must be considered. For example, by looking at the local window contain-
ing an elbow joint, it is very difficult to estimate its position in 3D. In addition,
when body parts are occluded, local information is insufficient for accurate es-
timation. Therefore, our networks only contain one stage. To take into account
contextual features, we design the network so that each node in the output layer
receives contributions from all the pixels in the input image.

Previous works on using neural networks for 3D pose estimation from images
mainly focuses on rigid objects or head pose. [22] uses fully connected networks
for estimating the pose parameters of 3D objects in single images. However, [22]
is only applicable to 3D rigid objects, such as cups and plates, which are very
different from 3D articulated objects such as humans. [23] uses convolutional
neural networks to detect faces, and estimates the head pose using a manually-
designed low-dimensional manifold of head pose. In contrast to these previous
works, we train our network to estimate the 3D pose of the whole human, which
is a complex 3D articulated object. Finally, [24] uses an implicit mixture of
conditional restricted Boltzmann machines to model the motion of 3D human
poses (i.e., predicting the next joint points from the previous joint points), and
applies it as the transition model in a Bayesian filtering framework for 3D human
pose tracking. In contrast, here we focus on estimating the 3D pose directly from
the image, and do not consider temporal information.

Previous works have demonstrated that learning body part labels could help
to find better features for pose estimation [4, 25]. In [4], random forests are used
for estimating the body part labels from depth images. Given the predictions of
labels, mean shift is applied to obtain the part locations. [25] trains a multi-task
deep convolutional neural network for 2D human pose estimation, consisting
of the pose regression task and body part detection tasks. All tasks share the
same convolutional feature layers, and it was shown that the regression network

4 Sijin Li Antoni B. Chan

benefits from sharing features with the detection network. In this work, we also
introduce an intermediate representation, body joint labels, for learning interme-
diate features within a multi-task framework. In contrast to [25], here we focus
on 3D pose estimation.

Pre-training has also been shown to be effective in training deep neural
networks [26, 27]. [26] empirically shows that the early stages of training with
stochastic gradient descent have a large impact on the network’s final perfor-
mance. Pre-training “regularizes” the network by leaving it in a basin of attrac-
tion with better generalization. In this work, we propose a strategy to pre-train
the regression network using the detection network.

In the literature, deep convolutional neural networks have mainly been used
for classification tasks [13, 14, 28], and have achieved state-of-art performances
on many vision problems. Importantly, given sufficient data, deep convolutional
neural networks can learn good features from randomly initialized weights. In
addition, features learned by classification networks can also be used for other
tasks – [29] feeds the output of the last convolutional layer of a trained classifi-
cation neural network into a regression network for predicting bounding boxes
for object detection.

3 Deep network for 3D pose estimation

In this paper, we use two strategies to train a deep convolutional neural network
for 3D pose estimation. Our framework consists of two types of tasks: 1) a joint
point regression task; and 2) joint point detection tasks. The input for both
tasks are the bounding box images containing human subjects. The goal of the
regression task is to estimate the positions of joint points relative to the root
joint position. We define a set of detection tasks, each of which is associated
with one joint point and one local window. The aim of each detection task is to
classify whether one local window contains the specific joint or not.

3.1 Notation

Let Ji = (Ji,x, Ji,y, Ji,z) be the location of the i-th joint in the camera coordinate
system. Let P be the articulated skeleton model for the human body, which
specifies the parent-child relationship between joints. For example, P (i) specifies
the parent joint of the i-th joint. To simplify notation, we let the parent of the
root joint to be itself.

3.2 Joint point regression task

The goal of joint point regression is to predict the positions of the joints relative
to the root location, J̃i = Ji − Jroot. Similar to [12, 9], we assume that the
bounding box of the human is provided, and hence it is not necessary to estimate
the root location of the person. However, rather than predict the relative joint

3D Human Pose Estimation from Monocular Images with Deep CNN 5

positions with respect to root joint, which is a common formulation as in [12, 9,
11], we instead aim to predict the joint positions relative to their parents joints,

Ri = Ji − JP (i). (1)

This representation can be interpreted as the unnormalized orientation of limbs.
There are several reasons why this representation may be advantageous: 1) the
variance of Ri is much smaller than J̃i, which makes it easier to learn – for
example, the distance between the wrist and elbow (i.e., ‖Rwrist‖) is constant
(for the same person), whereas the distance between the wrist and root position
(i.e., ‖J̃i‖) has a wide range of possible values; 2) Since the human body is
symmetric, information can be shared between different joints, e.g., the left arm
and right arm have the same length. In addition, this representation makes it
easier to infer the locations of occluded joints given its opposite part.

The joint point regressor is trained by minimizing the squared difference
between the prediction and the ground-truth position,

Er(Ri, R̂i) = ‖Ri − R̂i‖22 (2)

where Ri and R̂i are the ground-truth and estimated relative position for the
i-th joint.

3.3 Joint point detection task

Inspired by [25], we define a set of detection tasks for each joint i and each
window l, where the goal is to predict the indicator variable,

hi,l =

{
1, if Bi is inside window l,

0, otherwise,
(3)

where Bi is the 2D image location of the i-th joint in the input bounding box. Bi
is calculated by projecting Ji into the image and calculating its relative positions
with respect to the bounding box. In this work, we do not consider whether the
joints are visible or not, i.e., the indicator variables are calculated regardless if
the joint is occluded. The reason for doing this is to train the network to learn
features for pose estimation even in the presence of occlusions, which might
enable the network to predict valid poses when occlusion occur.

As in [25], the detection tasks are trained by minimizing the cross-entropy

between the ground-truth label hi,l and the estimated label ĥi,l,

Ed(ĥi,l, hi,l) = −hi,l log(ĥi,l)− (1− hi,l) log(1− ĥi,l). (4)

The relationship between the regression tasks and detection tasks is illustrated
in Figure 1.

6 Sijin Li Antoni B. Chan

Project into image

Sliding window detection Joint point regression

Fig. 1. Illustration of detection tasks and regression task.

Fig. 2. Network architecture. For network training using multi-task learning, the pool3
layer is connected to both the fcd1 and fcr1 layers. For pre-training with detection
tasks, pool3 is only connected to fcd1 layer. After pre-training, this connection is
removed and pool3 is connected to fcr1. N is the number of joints (N = 17 for
Human3.6M).

3.4 Network architecture and multi-task training

Our network architecture for 3D pose estimation is displayed in Figure 2. The
whole network consists of 9 trainable layers – 3 convolutional layers that are
shared by both regression and detection networks, 3 fully connected layers for
the regression network, and 3 fully connected layers for the detection network.
Rectified linear units (ReLu) [30] are used for conv1, conv2, and the first two
fully connected layers for both regression and detection networks. We use tanh as
the activation function for the last regression layer. To make the network robust
to pixel intensity, we add a local response normalization layer after conv2, which
applies the following function to calculate the output values,

f(ux,y) =
ux,y

(1 + α
|Wx|·|Wy|

∑
x′∈Wx

∑
y′∈Wy

u2x′,y′)
β

(5)

3D Human Pose Estimation from Monocular Images with Deep CNN 7

where ux,y is the value of the previous layer at location (x, y), (Wx,Wy) are the
neighborhood of locations (x, y), |W | represents the number of pixels within the
neighborhood, and {α, β} are hyper-parameters.

We train the network within a multi-task learning framework. As in [25],
we allow features in the lower layers to be shared between the regression and
detection tasks during joint training. During the training, the gradients from
both networks will be back-propagated to the same shared feature network, i.e.,
the network with layers from conv1 to pool3. In this case, the shared network
tends to learn features that will benefit both tasks. The global cost function for
multi-task training is

ΦM =
1

2

T∑
t=1

N∑
i=1

Er(R
(t)
i , R̂

(t)
i) +

1

2

T∑
t=1

N∑
i=1

L∑
l=1

Ed(h
(t)
i,l , ĥ

(t)
i,l), (6)

where the superscript t is the index of the training sample, N is the number of
joints, and T is the number of training samples.

3.5 Pre-training with the detection task

As an alternative to the multi-task training discussed earlier, another approach
is to train the pose regression network using pre-trained weights from the detec-
tion network. Firstly we train the detection network alone, i.e., the connections
between the pool3 layer and the fcr1 layer are blocked. In this stage, we only
minimize the second term in (6).

After training the detection tasks, we block the connection between pool3

and fcd1 (thus removing the detection task), and reconnect pool3 to fcr1 layer.
Using this strategy, the training for pose regression is initialized using the feature
layer weights (conv1-conv3) learned from the detection tasks. Finally, the pose
regression is trained using the first term in (6) as the cost function. Note that we
do not use the weights of the fully-connected layers of the detectors (fcd1 and
fcd2) to initialize fully-connected layers of the regression task (fcr1 and fcr2).
The reason is that the target for the detection and regression tasks are quite
different, so that the higher-level features used by the detection tasks might not
be useful for regression.

3.6 Training details

For both the multi-task and pre-training approaches, we use back-propagation [31]
to update the weights during training. In multi-task training, the pool3 layer
forwards its values to both fcd1 and fcr1, and receives the average of the gra-
dients from fcd1 and fcr1 when updating the weights. To reduce overfitting,
we use “dropout” [32] in fcr1 and fcd1, and set the dropout rate to 0.25. The
hyper-parameters for the local response normalization layer are set to α = 0.0025
and β = 0.75. More training details can be found in [13].

8 Sijin Li Antoni B. Chan

4 Experiment

In this section we present experiments using our deep convolutional neural net-
work for monocular 3d pose estimation (DconvMP).

4.1 Human3.6M dataset

The Human3.6M dataset [12] contains around 3.6 million frames of video with
11 human subjects performing 15 actions. The subjects are recorded from 4
different views with RGB cameras, and the joint positions of the subjects were
measured by a MoCap system. The calibration parameters are available for the
RGB cameras and MoCap system. In our experiments, we use 5 subjects (S1,
S5, S6, S7, S8) for training and validation, and 2 subjects (S9, S11) for testing.

Since our method is based on monocular images, we treat the 4 camera views
of each pose as separate examples. The ground-truth poses for each camera view
are obtained by transforming the joint locations into that camera’s coordinate
system. Therefore, the input for our method is a single image from one view,
and the targets are the joint locations under that view. Test samples from the
same frame but different views are evaluated separately, which follows the same
setup as [12].

4.2 Data augmentation

We use data augmentation to improve the robustness of the network. After
obtaining the bounding box of the human subject (provided by the Human3.6M
dataset), we resize the bounding box to 128×128, such that the aspect ratio of
the image is maintained. In order to make the network robust to the selection of
the bounding box, in each iteration, a sub-window of size 112×112 is randomly
selected as the training image (the 2D joint point projections are also adjusted
accordingly).

Random pixel noise is also added to each input image during training to
make the network robust to small perturbations of pixel values. As in [13] we
apply PCA on the RGB channels over the whole training samples. In the training
stage, we add random noise to all the pixels in each image,

p̂ = p + [e1, e2, e3] · [g1
√
α1, g2

√
α2, g3

√
α3]T , (7)

where [e1, e2, e3] and [α1, α2, α3] are the eigenvectors and eigenvalues of the
3x3 RGB covariance matrix of the training set, and {gc}3c=1 are each Gaussian
distributions with zero mean and variance 0.1. In each iteration, all the pixels
within one training sample will share the same random values {gc}3c=1.

4.3 Experiment setup

To generate the sliding window for joint point detection, we set the window size
to 10×10 and the step size to 10 pixels. Experiments are run on a machine with

3D Human Pose Estimation from Monocular Images with Deep CNN 9

two 6-core Intel(R) Xeon(R) CPUs and an Nvidia Tesla K20. It takes 1-2 days
to train one action in the Human3.6M dataset (around 100,000 samples after
augmentation).

4.4 Evaluation on Human3.6M

Since there is sufficient data in Human3.6M, we train the network for each
action separately, which follows the same action-specific protocol as [12]. We
selected six representative actions that ranged from easy to difficult (according
to previous results in [12]), which include “Walking”, “Discussion”, “Eating”,
“Walking Dog”, “Greeting” and “Taking Photos”. There were 132,744 training
samples for “Walking”, 158,788 for “Discussion”, 109,424 for “Eating”, 79,412
for “Walking Dog”, 72,436 for “Greeting” and 76,048 for “Taking Photos”.

We test networks trained with the heterogeneous multi-task learning frame-
work (denoted as DconvMP-HML), and using pre-training (denoted as Dcon-
vMP). Since training detection and regression separately takes more time, we
only run DconvMP for 3 actions, namely “Walking”, “Eating” and “Taking
Photo”. We compare against the best performing method, LinKDE, from [12], us-
ing the code provided in Human3.6M. We use the code provided by Human3.6M
to generate the bounding box for each image sample. Pose predictions are eval-
uated using the mean per joint position error (MPJPE) [12],

MPJPE =
1

T

1

N

T∑
t=1

N∑
i=1

‖(J (t)
i − J

(t)
root)− (Ĵ

(t)
i − Ĵ

(t)
root)‖2. (8)

The pose prediction results are reported in Table 1. We also show the MPJPE
accuracy versus error threshold for all methods in Figure 3. Compared with the
baseline method LinKDE [12], our network obtains significant improvement for
all the actions evaluated. In our experiments, the DconvMP network achieves
roughly the same performance as DconvMP-HML, but takes longer to train.

Figure 4 shows several examples of pose estimation (also see supplemental).
We observe that our methods perform better when there are occlusions (e.g., row
3 in Figure 4). In addition, our model performs well at distinguishing between
the left and right body parts (e.g., row 2 in Figure 4). In the case where the
error is large, our model still outputs a “valid” rough pose.

Table 1. The MPJPE results on Human3.6 dataset. The unit is millimeters. The
numbers in parenthesis is the standard deviation of the MPJPE for samples in the
testing set.

Action Walking Discussion Eating Taking Photo Walking Dog Greeting

DconvMP 80.09 (23.45) - 103.31 (37.33) 190.37 (90.64) - -
DconvMP-HML 77.60 (23.54) 148.79 (100.49) 104.01 (39.20) 189.08 (93.99) 146.59 (75.38) 127.17 (51.10)

LinKDE (BS) [12] 97.07 (37.14) 183.09 (116.74) 132.50 (72.53) 206.45 (112.61) 177.84 (122.65) 162.27 (88.43)

10 Sijin Li Antoni B. Chan

0 200 400 600 800
0

20

40

60

80

100

r

a
c
c
u
ra

c
y

Walking

0 200 400 600 800
0

20

40

60

80

100

r

a
c
c
u
ra

c
y

Discussion

0 200 400 600 800
0

20

40

60

80

100

r

a
c
c
u
ra

c
y

Eating

0 200 400 600 800
0

20

40

60

80

100

r

a
c
c
u
ra

c
y

Taking Photo

0 200 400 600 800
0

20

40

60

80

100

r

a
c
c
u
ra

c
y

Walking Dog

0 200 400 600 800
0

20

40

60

80

100

r

a
c
c
u
ra

c
y

Greeting

DconvMP DconvMP−HML LinKDE (BS)

Fig. 3. MPJPE accuracy for error threshold r.

5 Visualization of learned structures

In this section, we explore whether the network has learned the structure of the
human skeleton by analyzing the weights in the last layers of the joint regression
network. Let F be a m × 3 × N matrix of weights between the penultimate
and last layers, where m is the dimension of the penultimate layer. We use Fi
to denote the m × 3 matrix for predicting the i-th joint, and Fi,x to denote
the weights for predicting the x-coordinate of the i-th joint (see Figure 5). In
the following section, we examine the weights learned on the “Walking” action
in the Human3.6M dataset. The weights learned for other actions show similar
patterns.

5.1 Pearson correlation between joints

We first examine the correlation between the weights of pairs of joints, i.e.,
whether two joints use the same high-level features. To this end, we calculate
the Pearson correlation between the weights for each pair of joints (i, j),

ρxi,j =
cov(Fi,x, Fj,x)

σ(Fi,x)σ(Fj,x)
, (9)

where cov(X,Y) is the covariance of X and Y , σ(X) is the standard derivation
of X. The Pearson correlation is calculated for each dimension (x, y, and z).

Figure 6 (top) shows the correlation matrices between the regression weights.
Firstly, the correlation matrices show that the learned weights for the left and
right hips (also left and right shoulders) are negative correlated. This explains
why the network can correctly predict the left hip when only the right side of
the body is visible (see row 1 of Figure 4). Also note that the left hip and left
shoulder (also right hip and right shoulder) are positively correlated in the x-
and z-dimensions, but not the y-dimension; i.e., the left hip and left shoulder
share the same internal feature for predicting their x- and z-coordinates. This

3D Human Pose Estimation from Monocular Images with Deep CNN 11

input image DconvMP-HML LinKDE [12] Ground-truth

−400
−300

−200
−100

0
100

200

−600

−400

−200

0

200

400

600

800

−200
0

200

err=73.584290

−400
−300

−200
−100

0
100

200

−600

−400

−200

0

200

400

600

800

−200
0

200

err=153.647980

−500
−400

−300
−200

−100
0

100
200

−600

−400

−200

0

200

400

600

800

−400
−200

0
200

−300
−200

−100
0

100
200

300

−600

−400

−200

0

200

400

600

800

−200

0

200

400

err=31.529276

−300
−200

−100
0

100
200

300
400

−600

−400

−200

0

200

400

600

800

−200

0

200

err=226.903641

−300
−200

−100
0

100
200

300
400

−600

−400

−200

0

200

400

600

800

−200
0

200
400

−200

−100

0

100

200

300

−600

−400

−200

0

200

400

0

200

400

err=57.204365

−200
−100

0
100

200
300

400

−600

−400

−200

0

200

400

600

−200

0

200

400

err=133.575073

−300
−200

−100
0

100
200

300
400

−600

−500

−400

−300

−200

−100

0

100

200

300

400

−500

0

500

−300

−200

−100

0

100

200

−600

−400

−200

0

200

400

0

200

400

err=103.546448

−300
−200

−100
0

100
200

300

−600

−400

−200

0

200

400

600

−200

0

200

400

err=202.289337

−400

−300

−200

−100

0

100

−600

−400

−200

0

200

400

−200
0

200
400
600
800

−300
−200

−100
0

100

200

−400

−200

0

200

400

600

−200

0

200

400

err=204.676392

−400
−300

−200
−100

0
100

200
300

−400

−200

0

200

400

600

800

−500

0

500

err=580.250000

−800

−600

−400

−200

0

200

400

−400

−200

0

200

400

600

−200
0

200
400
600
800

c

Fig. 4. Examples of pose estimation on Human3.6M. The first two rows are taken
from the “Walking” action. The last three rows are taken from “Eating” action. The
joints on the right-side are represented by blue balls, while the remaining joints are
represented by red balls.

12 Sijin Li Antoni B. Chan

Fig. 5. Illustration of weights Fi and Fj in the final fully-connected layer for regression.
For clarity, all the connections are not shown.

suggests that the network has an internal representation for the positions of the
left (or right) side of the person, as delineated by the hip and shoulders.

For comparison, Figure 6 (bottom) shows the correlation matrices between
the ground-truth relative joint positions. Interestingly, these correlation matrices
share similar patterns to those calculated using the regression weights.

5.2 Sparsity measure with LP norm

We next examine the degree to which the internal features are shared in the
regression network. To do this, we measure the sparsity (number of zero entries)
of weight pairs. [33] showed that the negative lp norm can be used for measuring
the sparsity of a vector. We calculate the “co-sparsity” between the regression
weights of two joints (i, j) using

Sp(Fi,x, Fj,x) = −
∑
k

(∣∣∣ Fi,x,k

σ(Fi,x)

∣∣∣p +
∣∣∣ Fj,x,k

σ(Fj,x)

∣∣∣p) 1
p

, (10)

where (Fi,x,k, Fj,x,k) are the weights for joints i and j corresponding to the same
feature k. The Sp measure will be high if entries in the weight pair (Fi,x,k, Fj,x,k)
are zero.

The sparsity measures for each pair of joints are shown in Figure 7. We
observe that pairing wrists (or ankles) with other parts yields sparser weight
pairs, i.e., the prediction for wrists (or ankles) do not share high-level features
with other parts. One possible reason is that these extremal joints have the most
variance, and thus are the most difficult to predict. As a result, the network has
learned specific features for ankles and wrists, which are not shared with other
body parts.

6 Conclusion
In this work, we used a deep convolutional neural network for estimating 3D
human pose from monocular images. We considered two strategies for training
the network: 1) multi-task framework that simultaneously trains the regression

3D Human Pose Estimation from Monocular Images with Deep CNN 13

correlation between weights in the last regression layer

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

z

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

x

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

max

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

y

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

correlation between ground-truth relative joint locations

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

z

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

x

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

max

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

y

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Fig. 6. Pairwise Pearson correlation. Each group of four matrices shows the correlation
for the x-, y-, and z-dimensions, as well as the maximum magnitude over all dimensions.

14 Sijin Li Antoni B. Chan

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

z

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

x

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

max

ro
o
t

R
h
ip

R
kn

e
e

R
a
n
kl
e

Lh
ip

Lk
n
e
e

La
n
kl
e

to
rs
o

n
e
ck

n
o
se

h
e
a
d
u

Ls
h
o
u
ld
e
r

Le
lb
o
w

Lw
ri
st

R
sh
o
u
ld
e
r

R
e
lb
o
w

R
w
ri
st

root
Rhip

Rknee
Rankle

Lhip
Lknee
Lankle
torso
neck
nose

headu
Lshoulder

Lelbow
Lwrist

Rshoulder
Relbow
Rwrist

y

−48000

−44000

−40000

−36000

−32000

−28000

−24000

−20000

Fig. 7. The LP norm (p = 0.2) of the weights for joint pairs.

and detection tasks; 2) and pre-training the regression task with detection tasks.
These two strategies yield networks that achieve approximately the same perfor-
mance, although pre-training has longer running time. When either using pre-
training or sharing features, the detection tasks helps to regularize the training
of the regression network and guides it to better local minimums. We evaluated
our methods on the Human3.6M dataset, and the network achieves significant
improvement over baseline methods in [12]. We empirically showed that the deep
convolutional network has disentangled dependencies between body parts and
learned the correlation between output variables. In this work we have examined
how the network encodes structural dependencies in its weights. Future work will
explore how such structural dependencies can be induced in the network a priori.

Acknowledgement. This work was supported by the Research Grants Council
of the Hong Kong Special Administrative Region, China (CityU 123212 and
CityU 110513).

3D Human Pose Estimation from Monocular Images with Deep CNN 15

References

1. Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking
by detection. In: CVPR. (2010)

2. Wei, X.K., Chai, J.: Modeling 3d human poses from uncalibrated monocular im-
ages. In: ICCV. (2009) 1873–1880

3. Agarwal, A., Triggs, B.: Recovering 3d human pose from monocular images. IEEE
Trans. Pattern Anal. Mach. Intell. 28 (2006) 44–58

4. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-
man, A., Blake, A.: Real-time human pose recognition in parts from single depth
images. CVPR (2011)

5. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition.
IJCV (2005) 55–79

6. Eichner, M., Marin-Jimenez, M., Zisserman, A., Ferrari, V.: 2d articulated human
pose estimation and retrieval in (almost) unconstrained still images. IJCV (2012)

7. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-
parts. In: CVPR. (2011)

8. Burenius, M., Sullivan, J., Carlsson, S.: 3d pictorial structures for multiple view
articulated pose estimation. In: CVPR. (2013) 3618–3625

9. Bo, L., Sminchisescu, C.: Twin gaussian processes for structured prediction. Int.
J. Comput. Vision (2010)

10. Dantone, M., Gall, J., Leistner, C., van Gool, L.: Human pose estimation from
still images using body parts dependent joint regressors. In: CVPR. (2013)

11. Ionescu, C., Li, F., Sminchisescu, C.: Latent structured models for human pose
estimation. In: ICCV. (2011) 2220–2227

12. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2014)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS 25. (2012)

14. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features
for scene labeling. IEEE TPAMI (2013)

15. Bengio, Y.: Deep learning of representations: Looking forward. CoRR
abs/1305.0445 (2013)

16. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment
classification: A deep learning approach. In: ICML. (2011)

17. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based
human motion capture and analysis. CVIU 104 (2006) 90–126

18. Jain, A., Tompson, J., Andriluka, M., Taylor, G.W., Bregler, C.: Learning human
pose estimation features with convolutional networks. In: International Conference
on Learning Representations (ICLR). (2014)

19. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient re-
gression of general-activity human poses from depth images. In: ICCV. (2011)
415–422

20. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point
detection. In: CVPR. (2013)

21. Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural net-
works. In: IEEE Conf. Computer Vision and Pattern Recognition. (2014)

22. Yuan, C., Niemann, H.: Neural networks for the recognition and pose estimation
of 3d objects from a single 2d perspective view. Image Vision Comput. 19 (2001)
585–592

16 Sijin Li Antoni B. Chan

23. Osadchy, M., Cun, Y.L., Miller, M.L.: Synergistic face detection and pose estima-
tion with energy-based models. JMLR 8 (2007) 1197–1215

24. Taylor, G.W., Sigal, L., Fleet, D.J., Hinton, G.E.: Dynamical binary latent variable
models for 3d human pose tracking. In: CVPR. (2010) 631–638

25. Li, S., Liu, Z.Q., Chan, A.B.: Heterogeneous multi-task learning for human pose
estimation with deep convolutional neural network. In: CVPR: DeepVision work-
shop. (2014)

26. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11 (2010)
625–660

27. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18 (2006) 1527–1554

28. Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., Ng,
A.: Building high-level features using large scale unsupervised learning. In: ICML.
(2012)

29. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks.
CoRR abs/1312.6229 (2013)

30. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. (2010)

31. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE. (1998) 2278–2324

32. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Im-
proving neural networks by preventing co-adaptation of feature detectors. CoRR
(2012)

33. Hurley, N., Rickard, S.: Comparing measures of sparsity. IEEE Trans. Inf. Theor.
55 (2009) 4723–4741

